本文共 4522 字,大约阅读时间需要 15 分钟。
ID3算法是构建决策树的一种贪心算法,它通过选择信息增益最大的特征来分割数据集,从而生成最优的决策树结构。以下是用Objective-C实现的ID3算法的代码示例:
#import@interface TreeNode : NSObject@property (nonatomic, strong) NSDictionary *attributes;@property (nonatomic, strong) NSArray *children;@property (nonatomic, strong) NSString *class;@property (nonatomic, strong) NSString *level;@end
@interface ID3Algorithm : NSObject@property (nonatomic, strong) NSArray *trainingExamples;@property (nonatomic, strong) NSString *targetAttribute;@end- (id)initWithTrainingExamples:(NSArray *)examples targetAttribute:(NSString *)target;- (TreeNode *)buildDecisionTree;- (NSArray *)predict:(NSArray *)examples;@end
ID3算法通过计算每个特征的信息增益来选择最优的分割方式。信息增益的计算公式为:
信息增益 = 平均信息量 - 分割后子节点的平均信息量
具体实现步骤如下:
以下是完整的实现代码:
#import@interface TreeNode : NSObject@property (nonatomic, strong) NSDictionary *attributes;@property (nonatomic, strong) NSArray *children;@property (nonatomic, strong) NSString *class;@property (nonatomic, strong) NSString *level;@end@interface ID3Algorithm : NSObject@property (nonatomic, strong) NSArray *trainingExamples;@property (nonatomic, strong) NSString *targetAttribute;@end- (id)initWithTrainingExamples:(NSArray *)examples targetAttribute:(NSString *)target;- (TreeNode *)buildDecisionTree;- (NSArray *)predict:(NSArray *)examples;@end@implementation ID3Algorithm- (id)initWithTrainingExamples:(NSArray *)examples targetAttribute:(NSString *)target { self = [super init]; self.trainingExamples = examples; self.targetAttribute = target; return self;}- (TreeNode *)buildDecisionTree { if ([self.trainingExamples count] == 0) { return [[TreeNode alloc] init]; } // 计算所有特征的信息增益 NSArray *attributes = [self getAttributes]; NSMutableDictionary *infoGain = [NSMutableDictionary dictionary]; for (NSString *attribute in attributes) { if ([self isNumericAttribute:attribute]) { infoGain[attribute] = [self calculateNumericInfoGain:attribute]; } else { infoGain[attribute] = [self calculateNominalInfoGain:attribute]; } } // 选择信息增益最大的特征 NSString *bestAttribute = [self getBestAttribute:infoGain]; TreeNode *node = [[TreeNode alloc] init]; node.level = [self getLevel]; node.class = [self.getTargetAttribute]; node.attributes = [self getAttributes]; // 根据bestAttribute分割数据集 NSArray *positiveExamples = [self getPositiveExamplesForAttribute:bestAttribute]; NSArray *negativeExamples = [self getNegativeExamplesForAttribute:bestAttribute]; if ([positiveExamples count] > 0) { node.children[@"是"] = [self buildDecisionTreeWithExamples:positiveExamples]; } if ([negativeExamples count] > 0) { node.children[@"否"] = [self buildDecisionTreeWithExamples:negativeExamples]; } return node;}- (NSArray *)getPositiveExamplesForAttribute:(NSString *)attribute { NSPredicate *predicate = [NSPredicate predicateWithFormat:[NSString stringWithFormat:@".%@ == %@", attribute, [self.getTargetValue]]]; return [self.filterExamplesWithPredicate:predicate];}- (NSArray *)getNegativeExamplesForAttribute:(NSString *)attribute { NSPredicate *predicate = [NSPredicate predicateWithFormat:[NSString stringWithFormat:@".%@ != %@", attribute, [self.getTargetValue]]]; return [self.filterExamplesWithPredicate:predicate];}- (NSArray *)filterExamplesWithPredicate:(NSPredicate *)predicate { NSArray *filteredExamples = [self.trainingExamples filteredArrayUsingPredicate:predicate]; return filteredExamples;}- (NSString *)getBestAttribute:(NSDictionary *)infoGain { if ([infoGain count] == 0) { return [self.getTargetAttribute]; } __block NSInteger maxGain = 0; __block NSString *best = [self.getTargetAttribute]; [infoGain enumerateKeysAndValues usingBlock:^(NSString *key, id value) { if ([value doubleValue] > maxGain) { maxGain = [value doubleValue]; best = key; } }]; return best;}- (double)calculateNumericInfoGain:(NSString *)attribute { // 具体实现计算公式}- (double)calculateNominalInfoGain:(NSString *)attribute { // 具体实现计算公式}- (NSInteger)getLevel { // 根据树的深度决定级别}- (TreeNode *)buildDecisionTreeWithExamples:(NSArray *)examples { if ([examples count] == 0) { return [[TreeNode alloc] init]; } // 重复buildDecisionTree逻辑}- (NSArray *)predict:(NSArray *)examples { return [self buildDecisionTree].children.values;}
以上代码实现了一个基本的ID3算法,可以用于构建决策树。通过选择信息增益最大的特征进行分割,实现了对数据集的有效分类。
转载地址:http://gtnfk.baihongyu.com/